

HCAL Constants

Shuichi Kunori U of Maryland 21-July-2003

LHC and CMS
HCAL plan
Four Databases

Caution - All information in these slides are very preliminary and some may be wrong.

The LHC

R = 4.5 Km E = 7+7 TeV (pp)

crossing rate =40MHz (25nsec)

design luminosity = 10³⁴cm⁻²s⁻¹

~20 pp interactions per crossing at design luminosity

 $h \rightarrow 4 \mu$ with 20 min. bias evt.

The CMS detector

Toal weight 12500 t Overall diameter 15 m Overall length 21.6 m All silicon tracker micro strips (10M ch) pixel (40M ch)

(5.4m long, 2.4m Φ: |η| <2.4)

Hermetic calorimeter
ECAL: PbWO4 crystal
HCAL: brass+scinti.
(|n| <3.0)

in 4 Tesla solenoid

(12.5m long, $6m \Phi in$)

Robust muon system DT+RPC (barrel) CSC+RPC (endcap)

(in iron yoke: $|\eta| < 2.4$)

Fast cerenkov calor.
quartz fibber
(3<|n|<5)

HCAL barrel

Surface buildings and main shaft

Installation of the first muon chamber

Transfer YB0 (2000t) in 2005

HCAL plan

2003 June-September

- Calibration runs in the H2 testbeam at CERN
 - All HCAL subdetectors: HB, HE, HF, HO + Crystals

2004 Summer-

- Low energy testbeam at H2
 - EC+HC response to low energy beam
 - hadron showers at low energy
- Slice test with EMU, TRIG and DAQ at CMS.
 - Full system test hardware & software & operation

2005

Transfer HCAL to the under-ground experimental hall.

2006

- Test beam (?)
- Integration and commissioning

2007

Data taking

Conditions Database

All information needed for event reconstruction (HLT/Offiline)

```
    HB, HE, HO: scintillator/brass sampling calorimeter
    scint. - HPD - QIE (ADC) - HTR (Trig Primitive/pipeline) - L1/DAQ
    HF: quartz fiber/iron calorimeter
    fibers - PMT - QIE (ADC) - HTR (Trig Primitive/pipeline) - L1/DAQ
```

Readout channels ~ 10k Stable detector – no need to update constants frequently, hopefully. HF gain will decrease due to radiation damage (slow time constant).

Constants - from ADC counts to GeV

```
1) Channel response (scint-HPD-QIE) 1 * 10k (ch)
2) QIE calibration (ADC-to-Charge(fC)) 128 (bin) * 10k (ch)
3) Charge-to-GeV (HB,HE,HO,HF) 1 * 4
4) Pedestal 4 (capid) * 10k (ch)
```

+) Channel# - (eta,phi,depth) map

Configuration DB

All information required to bring the detector in any running mode.

Run modes:

1) beam, 2) pedestal 3) source calib 4) laser calib 5) LED calib

Constants (on detector)

```
HPD/PMT - HV 1/(HPD or PMT)
```

CCM - clock phase 1/(ch)

CalibModule - mode+

Constants (in counting room)

```
HTR - pedestal 1/(ch)
- LUT(ADC-to-GEV) 1LUT/(ch)
- threshold 1/(ch)
TTC - timing
```


Integration Database

All information to physically set up the detector and is used for asset tracking

Detector components: (on detector)

- 1) Absorber
- 2a) Megatile
- 2b) Quartz fiber bundle (HF)
- 3) Optical cable
- 4) RBX(readout box)
- 4.1) RM{ODU, HPD(PMT), QIE}
- 4.2) CCM
- 4.3) Calibration Module
- 5) Cable
- +) shielding, support (HF)

Detector components: (in counting room)

- 1) Crate
- 1.1) HTR
- 1.2) TTC

Channel map (eta,phi,depth)→megatile→optical cable→RM{ODU,HPD,QIE}→HTR(ch)}

Construction/Hardware DB

- dimension, source tube location (HF)

- C-DB: all information about the sub detector construction up to the start of integration.
- H-DB: all information required for cross checking calibration constants and for detector simulation.

Detector components: (on detector)

```
    2a) Megatile/fibers - dimension, fiber length, att.length, source scan
    2b) Quartz fiber bundle (HF) - type
    3) Optical cable - length
    4) RBX(readout box) -
```

4.1) RM{ODU, HPD(PMT), QIE} - HPD(PMT) gain, QIE(ADC→fC, timing), map

4.2) CCM -

4.3) Calibration Module -

5) data cable -

+) shielding, support (HF)

Detector components: (in counting room)

1) Crate

1.1) HTR

1.2) TTC

Calibration Data

1) Absorber

Additional slides

Data Flow

>>> <u>front end</u> <<<

Scint. Lights ->Tile->Fiber1&2->OptCable ->HPD->Amp->ADC-> Charge (for 5-10xings) ->(L1Path) ->(DAQPath)

>>> <u>L1Path</u> <<<

```
->HTR (ch)
E<sub>T</sub>(L1Primitive: 8bits:non-linear)
->L1 LUT (ch)
E<sub>T</sub>(4x4 HcTower: 8bits:linear)
->L1Calo
E<sub>T</sub>(L1jets),Et(L1tau),Et(L1MET)
->L1CaloGlobal(Threshold (obj))
->L1Global
L1Trigger
```

>>> after <u>DAQPath</u> <<<

```
->ReadoutAnalyzer (ch)

E<sub>T</sub>(channel)
->TowerCreator

E<sub>T</sub>(Ec+Hc Tower)
->Jet/MET/tauReco

E<sub>T</sub>(jetR),Et(tauR),Et(METR)
->EtCaloCorrection (obj)
(corr. for linearlity)

E<sub>T</sub>(JetC),Et(tauC),Et(METC)
->EtPhysCorrection (obj)
(corr. for out-of-cone)

E<sub>T</sub>(Parton)
```

Calibration/correction (ch) - channel by channel (obj) - phys. Obj, (jet, tau, MET)

Tools

A) Megatile scanner:

- Co⁶⁰ gamma source
- each tile: light yield
- during construction all tiles

B) Moving radio active source:

- Co⁶⁰ gamma source
- full chain: gain
- during CMS-open (manual) all tiles
- during off beam time (remote) tiles in layer 0 & 9

C) UV Laser:

- full chain: timing, gain-change
- during off beam time tiles in layer 0 & 9 all RBX

D) Blue LED:

- timing, gain change
- during the off beam time all RBX

E) Test beam

- normalization betweenGeV vs. ADC vs. A,B,C,D
- ratios: elec/pion, muon/pion
- before assembly a few wedges

F) Physics events

- mip signal, link to HO muon
- calo energy scale (e/pi) charged hadron
- physics energy scale
 Min-bias
 photon+jet balancing
 Z+jet balancing
 jet-jet balancing
 di-jet mass
 W->ij in top decay
- >> non-linear response
- >> pile-up effect

Scenario (HB/HE)

(same to HF)

1) Before megatile insertion

megatile scanner: all tilesmoving wire source: all tiles

2.1) After megatile insertion

- moving wire source: all tiles / 2 layer

- UV laser: 2 layers/wedge

2.2) After megatile insertion

- test beam: a few wedges.

Absolute calib.
Accuracy of 2%
for single particle

3) Before closing the CMS

moving wire source: all tilesUV laser & blue LED: all RBX

(do 3, about once/year)

4) Beam off times

- moving wire source: 2layer/wedge

- UV laser: 2 laer/wedge

- UV laser & blue LED: all RBX

5) Beam on (in situ)

 Monitor for change with time Accuracy < 1%

once/month

a few times/day (?)